Questions & Answers - Ask Your Doubts

Ask your doubts to Learn New things everyday

Filters

All

Board/TargetAll

SubjectAll

GradeCondition for Collinearity of three points, Condition for Collinearity of three points

TopicLatest Questions

Using the method of slope, show that the points A(16, -18), B(3, -6) and C(-10, 6) are collinear.

Find the value of k for which the points $A\left( -2,3 \right),B\left( 1,2 \right)\ and\ C\left( k,0 \right)$are collinear.

Using the distance formula, show that the points $A\left( 3,-2 \right),B\left( 5,2 \right)\ and\ C\left( 8,8 \right)$are collinear.

Using the distance formula, prove that the points $A\left( -2,3 \right),B\left( 1,2 \right)\ and\ C\left( 7,0 \right)$ are collinear.

Prove that the points \[\left( {a,0} \right),\left( {0,b} \right){\text{ and }}\left( {1,1} \right)\] are collinear if, \[\dfrac{1}{a} + \dfrac{1}{b} = 1\].

Find the equation of the line passing through the points $P\left( {5,1} \right)$ and $Q\left( {1, - 1} \right)$. Hence, show that the points $P$, $Q$ and $R\left( {11,4} \right)$ are collinear.

For what values of $y$ are points $P\left( 1,4 \right),Q\left( 3,y \right)$ and $R\left( -3,16 \right)$ are collinear?

Show that the points \[(2,3, - 4),(1, - 2,3)\]and\[(3,8, - 11)\] are collinear.

If the three points\[(3q,0),\]\[(0,3p)\] and \[(1,1)\]are collinear, then which one is correct?

1) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 0\]

2) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 1\]

3) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 3\]

4) \[(\dfrac{1}{p}) + (\dfrac{3}{q}) = 1\]

1) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 0\]

2) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 1\]

3) \[(\dfrac{1}{p}) + (\dfrac{1}{q}) = 3\]

4) \[(\dfrac{1}{p}) + (\dfrac{3}{q}) = 1\]

Show that the points $\left( 3,3 \right),\left( h,0 \right)$ and $\left( 0,k \right)$ are collinear, if $\dfrac{1}{h}+\dfrac{1}{k}=\dfrac{1}{3}$

Which of the following points are collinear?

A). $(2a, 0), (3a, 0), (a, 2a)$

B). $(3a, 0), (0, 3b), (a, 2b)$

C). $(3a, b), (a, 2b), (-a, b)$

D). $(a, -6), (-a, 3b), (-2a, -2b)$

A). $(2a, 0), (3a, 0), (a, 2a)$

B). $(3a, 0), (0, 3b), (a, 2b)$

C). $(3a, b), (a, 2b), (-a, b)$

D). $(a, -6), (-a, 3b), (-2a, -2b)$

Show that the following points are collinear. $A(2, - 2),B( - 3,8)$ and $C( - 1,4)$.

Prev

1

2

3

4

5

Next